The maximal linear extension theorem in second order arithmetic
نویسندگان
چکیده
We show that the maximal linear extension theorem for well partial orders is equivalent over RCA0 to ATR0. Analogously, the maximal chain theorem for well partial orders is equivalent to ATR0 over RCA0.
منابع مشابه
A FUZZY VERSION OF HAHN-BANACH EXTENSION THEOREM
In this paper, a fuzzy version of the analytic form of Hahn-Banachextension theorem is given. As application, the Hahn-Banach theorem for$r$-fuzzy bounded linear functionals on $r$-fuzzy normedlinear spaces is obtained.
متن کاملLinear Arithmetic with Stars
We consider an extension of integer linear arithmetic with a “star” operator takes closure under vector addition of the solution set of a linear arithmetic subformula. We show that the satisfiability problem for this extended language remains in NP (and therefore NP-complete). Our proof uses semilinear set characterization of solutions of integer linear arithmetic formulas, as well as a general...
متن کاملFrom Bounded Arithmetic to Second Order Arithmetic via Automorphisms
In this paper we examine the relationship between automorphisms of models of I∆0 (bounded arithmetic) and strong systems of arithmetic, such as PA, ACA0 (arithmetical comprehension schema with restricted induction), and Z2 (second order arithmetic). For example, we establish the following characterization of PA by proving a “reversal” of a theorem of Gaifman: Theorem. The following are equivale...
متن کاملOn Linear Arithmetic with Stars
We consider an extension of integer linear arithmetic with a star operator that takes closure under vector addition of the set of solutions of linear arithmetic subformula. We show that the satisfiability problem for this language is in NP (and therefore NP-complete). Our proof uses a generalization of a recent result on sparse solutions of integer linear programming problems. We present two co...
متن کاملThe second geometric-arithmetic index for trees and unicyclic graphs
Let $G$ be a finite and simple graph with edge set $E(G)$. The second geometric-arithmetic index is defined as $GA_2(G)=sum_{uvin E(G)}frac{2sqrt{n_un_v}}{n_u+n_v}$, where $n_u$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$. In this paper we find a sharp upper bound for $GA_2(T)$, where $T$ is tree, in terms of the order and maximum degree o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arch. Math. Log.
دوره 50 شماره
صفحات -
تاریخ انتشار 2011